1. López-Otín C, Blasco MA, Partridge L, et al. : The hallmarks of aging. Cell. 2013;153(6):1194–217. 10.1016/j.cell.2013.05.039
2. Engelfriet PM, Jansen EH, Picavet HS, et al. : Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev. 2013;35(1):132–51. 10.1093/epirev/mxs011
3. Johnson TE: Recent results: biomarkers of aging. Exp Gerontol. 2006;41(12):1243–6. 10.1016/j.exger.2006.09.006
4. Aubert G, Lansdorp PM: Telomeres and aging. Physiol Rev. 2008;88(2):557–79. 10.1152/physrev.00026.2007
5. Kimura M, Hjelmborg JV, Gardner JP, et al. : Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008;167(7):799–806. 10.1093/aje/kwm380
6. Rehkopf DH, Needham BL, Lin J, et al. : Leukocyte Telomere Length in Relation to 17 Biomarkers of Cardiovascular Disease Risk: A Cross-Sectional Study of US Adults. PLoS Med. 2016;13(11):e1002188. 10.1371/journal.pmed.1002188
7. Hammadah M, Al Mheid I, Wilmot K, et al. : Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res. 2017;120(7):1130–8. 10.1161/CIRCRESAHA.116.309421
8. Blackburn EH, Epel ES, Lin J: Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. 10.1126/science.aab3389
9. Eitan E, Hutchison ER, Mattson MP: Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci. 2014;37(5):256–63. 10.1016/j.tins.2014.02.010
10. Sedelnikova OA, Horikawa I, Zimonjic DB, et al. : Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 2004;6(2):168–70. 10.1038/ncb1095
11. Dollé ME, Giese H, Hopkins CL, et al. : Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet. 1997;17(4):431–4. 10.1038/ng1297-431
12. White RR, Milholland B, de Bruin A, et al. : Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing. Nat Commun. 2015;6:6790. 10.1038/ncomms7790
13. Wang C, Jurk D, Maddick M, et al. : DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009;8(3):311–23. 10.1111/j.1474-9726.2009.00481.x
14. Rübe CE, Fricke A, Widmann TA, et al. : Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One. 2011;6(3):e17487. 10.1371/journal.pone.0017487
15. Kuo LJ, Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo.2008;22(3):305–9.
16. Song Z, von Figura G, Liu Y, et al. : Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15. 10.1111/j.1474-9726.2010.00583.x
17. Chevanne M, Caldini R, Tombaccini D, et al. : Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians.Biogerontology. 2003;4(2):97–104. 10.1023/A:1023399820770
18. Day K, Waite LL, Thalacker-Mercer A, et al. : Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol.2013;14(9):R102. 10.1186/gb-2013-14-9-r102
19. Horvath S, Zhang Y, Langfelder P, et al. : Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13(10):R97. 10.1186/gb-2012-13-10-r97
20. Horvath S, Gurven M, Levine ME, et al. : An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171. 10.1186/s13059-016-1030-0
21. Weidner CI, Lin Q, Koch CM, et al. : Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24. 10.1186/gb-2014-15-2-r24
22. Bacos K, Gillberg L, Volkov P, et al. : Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016;7: 11089. 10.1038/ncomms11089
23. Sen P, Shah PP, Nativio R, et al. : Epigenetic Mechanisms of Longevity and Aging. Cell.2016;166(4):822–39. 10.1016/j.cell.2016.07.050
24. Lu Y, Biancotto A, Cheung F, et al. : Systematic Analysis of Cell-to-Cell Expression Variation of T Lymphocytes in a Human Cohort Identifies Aging and Genetic Associations. Immunity. 2016;45(5):1162–75. 10.1016/j.immuni.2016.10.025
25. Peters MJ, Joehanes R, Pilling LC, et al. : The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6: 8570. 10.1038/ncomms9570
26. Dumortier O, Hinault C, Van Obberghen E: MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18(3):312–24. 10.1016/j.cmet.2013.06.004
27. Dhahbi JM: Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014;17:86–98. 10.1016/j.arr.2014.02.005
28. Li X, Khanna A, Li N, et al. : Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY). 2011;3(10):985–1002. 10.18632/aging.100371
29. Pang J, Xiong H, Yang H, et al. : Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol. 2016;76:58–67. 10.1016/j.exger.2016.01.009
30. Olivieri F, Spazzafumo L, Santini G, et al. : Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012;133(11–12):675–85. 10.1016/j.mad.2012.09.004
31. Noren Hooten N, Fitzpatrick M, Wood WH, 3rd, et al. : Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013;5(10):725–40. 10.18632/aging.100603
32. Olivieri F, Bonafè M, Spazzafumo L, et al. : Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY). 2014;6(9):771–87. 10.18632/aging.100693
33. Pincus Z, Smith-Vikos T, Slack FJ: MicroRNA predictors of longevity in Caenorhabditis elegans.PLoS Genet. 2011;7(9):e1002306. 10.1371/journal.pgen.1002306
34. Fatica A, Bozzoni I: Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. 10.1038/nrg3606
35. Grammatikakis I, Panda AC, Abdelmohsen K, et al. : Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014;6(12):992–1009. 10.18632/aging.100710
36. Kour S, Rath PC: Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev.2016;26:1–21. 10.1016/j.arr.2015.12.001
37. Quinn JJ, Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. 10.1038/nrg.2015.10
38. Montes M, Nielsen MM, Maglieri G, et al. : The lncRNA MIR31HG regulates p16 INK4A expression to modulate senescence. Nat Commun. 2015;6:6967. 10.1038/ncomms7967
39. Chen YN, Cai MY, Xu S, et al. : Identification of the lncRNA, AK156230, as a novel regulator of cellular senescence in mouse embryonic fibroblasts. Oncotarget. 2016;7(33):52673–84. 10.18632/oncotarget.10170
40. Boon RA, Hofmann P, Michalik KM, et al. : Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function: Implications for Regenerative Angiogenesis. J Am Coll Cardiol. 2016;68(23):2589–91. 10.1016/j.jacc.2016.09.949
41. Zhu S, Li W, Liu J, et al. : Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 2016;34(12):1279–86. 10.1038/nbt.3715
42. Fontana L, Partridge L, Longo VD: Extending healthy life span--from yeast to humans. Science.2010;328(5976):321–6. 10.1126/science.1172539
43. Schumacher B, van der Pluijm I, Moorhouse MJ, et al. : Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 2008;4(8):e1000161. 10.1371/journal.pgen.1000161
44. Corpas E, Harman SM, Blackman MR: Human growth hormone and human aging. Endocr Rev.1993;14(1):20–39. 10.1210/edrv-14-1-20
45. Crimmins E, Vasunilashorn S, Kim JK, et al. : Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216. 10.1016/S0065-2423(08)00405-8
46. Johnson SC, Rabinovitch PS, Kaeberlein M: mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432):338–45. 10.1038/nature11861
47. Bajwa P, Nagendra PB, Nielsen S, et al. : Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium. Oncotarget. 2016;7(15):19214–27. 10.18632/oncotarget.8468
48. Dieterlen MT, Bittner HB, Klein S, et al. : Assay validation of phosphorylated S6 ribosomal protein for a pharmacodynamic monitoring of mTOR-inhibitors in peripheral human blood. Cytometry B Clin Cytom.2012;82(3):151–7. 10.1002/cyto.b.21005
49. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. : Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4: 2192. 10.1038/ncomms3192
50. Gordon SE, Lake JA, Westerkamp CM, et al. : Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass? Exerc Sport Sci Rev. 2008;36(4):179–86. 10.1097/JES.0b013e3181877e13
51. Massudi H, Grant R, Braidy N, et al. : Age-associated changes in oxidative stress and NAD +metabolism in human tissue. PLoS One. 2012;7(7):e42357. 10.1371/journal.pone.0042357
52. Dang W: The controversial world of sirtuins. Drug Discov Today Technol. 2014;12:e9–e17. 10.1016/j.ddtec.2012.08.003
53. Imai S, Guarente L: NAD + and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464–71. 10.1016/j.tcb.2014.04.002
54. Kim KS, Park HK, Lee JW, et al. : Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Res Tech. 2015;78(4):277–82. 10.1002/jemt.22472
55. Zhang J, Fang L, Lu Z, et al. : Are sirtuins markers of ovarian aging? Gene. 2016;575(2 Pt 3):680–6. 10.1016/j.gene.2015.09.043
56. Yudoh K, Karasawa R, Ishikawa J: Age-related Decrease of Sirtuin 2 Protein in Human Peripheral Blood Mononuclear Cells. Curr Aging Sci. 2015;8(3):256–8. 10.2174/1874609808999150831112939
57. Gorisse L, Pietrement C, Vuiblet V, et al. : Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci U S A. 2016;113(5):1191–6. 10.1073/pnas.1517096113
58. Verbrugge FH, Tang WH, Hazen SL: Protein carbamylation and cardiovascular disease. Kidney Int.2015;88(3):474–8. 10.1038/ki.2015.166
59. Semba RD, Nicklett EJ, Ferrucci L: Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65(9):963–75. 10.1093/gerona/glq074
60. Thorpe SR, Baynes JW: Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996;9(2):69–77. 10.2165/00002512-199609020-00001
61. Hanssen NM, Wouters K, Huijberts MS, et al. : Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J.2014;35(17):1137–46. 10.1093/eurheartj/eht402
62. Sayej WN, Knight Iii PR, Guo WA, et al. : Advanced Glycation End Products Induce Obesity and Hepatosteatosis in CD-1 Wild-Type Mice. Biomed Res Int. 2016;2016: 7867852. 10.1155/2016/7867852
63. Brownlee M: Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34. 10.1146/annurev.med.46.1.223
64. Nagai R, Shirakawa J, Ohno R, et al. : Antibody-based detection of advanced glycation end-products: promises vs. limitations. Glycoconj J. 2016;33(4):545–52. 10.1007/s10719-016-9708-9
65. Dall'Olio F, Vanhooren V, Chen CC, et al. : N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev. 2013;12(2):685–98. 10.1016/j.arr.2012.02.002
66. Glei DA, Goldman N, Lin YH, et al. : Age-Related Changes in Biomarkers: Longitudinal Data from a Population-Based Sample. Res Aging. 2011;33(3):312–26. 10.1177/0164027511399105
67. Montoliu I, Scherer M, Beguelin F, et al. : Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY). 2014;6(1):9–25. 10.18632/aging.100630
68. Sanchis-Gomar F, Pareja-Galeano H, Santos-Lozano A, et al. : A preliminary candidate approach identifies the combination of chemerin, fetuin-A, and fibroblast growth factors 19 and 21 as a potential biomarker panel of successful aging. Age (Dordr). 2015;37(3):9776. 10.1007/s11357-015-9776-y
69. Syslová K, Böhmová A, Mikoška M, et al. : Multimarker screening of oxidative stress in aging. Oxid Med Cell Longev. 2014;2014: 562860. 10.1155/2014/562860
70. Shen EZ, Song CQ, Lin Y, et al. : Mitoflash frequency in early adulthood predicts lifespan inCaenorhabditis elegans. Nature. 2014;508(7494):128–32. 10.1038/nature13012
71. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, et al. : Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 2016;10:65–77. 10.1016/j.redox.2016.09.009
72. Tyrrell DJ, Bharadwaj MS, Van Horn CG, et al. : Respirometric Profiling of Muscle Mitochondria and Blood Cells Are Associated With Differences in Gait Speed Among Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci. 2015;70(11):1394–9. 10.1093/gerona/glu096
73. Wilkins HM, Koppel SJ, Weidling IW, et al. : Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J Neuroimmune Pharmacol. 2016;11(4):622–8. 10.1007/s11481-016-9704-7
74. Burton DG: Cellular senescence, ageing and disease. Age (Dordr). 2009;31(1):1–9. 10.1007/s11357-008-9075-y
75. Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705. 10.1146/annurev-physiol-030212-183653
76. Tacutu R, Budovsky A, Yanai H, et al. : Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective. Aging (Albany NY). 2011;3(12):1178–91. 10.18632/aging.100413
77. Sharpless NE, Sherr CJ: Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397–408. 10.1038/nrc3960
78. Matjusaitis M, Chin G, Sarnoski EA, et al. : Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 2016;29:1–12. 10.1016/j.arr.2016.05.003
79. Dimri GP, Lee X, Basile G, et al. : A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7. 10.1073/pnas.92.20.9363
80. Liu Y, Sanoff HK, Cho H, et al. : Expression of p16 INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8(4):439–48. 10.1111/j.1474-9726.2009.00489.x
81. Vandenberk B, Brouwers B, Hatse S, et al. : p16 INK4a: A central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J Geriatr Oncol. 2011;2(4):259–69. 10.1016/j.jgo.2011.08.004
82. Kurz DJ, Decary S, Hong Y, et al. : Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113(Pt 20):3613–22.
83. Yang NC, Hu ML: The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9. 10.1016/j.exger.2005.07.011
84. Schadendorf D, Möller A, Algermissen B, et al. : IL-8 produced by human malignant melanoma cellsin vitro is an essential autocrine growth factor. J Immunol. 1993;151(5):2667–75.
85. Wajapeyee N, Serra RW, Zhu X, et al. : Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74. 10.1016/j.cell.2007.12.032
86. Tchkonia T, Zhu Y, van Deursen J, et al. : Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72. 10.1172/JCI64098
87. Coppé JP, Desprez PY, Krtolica A, et al. : The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. 10.1146/annurev-pathol-121808-102144
88. Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol.2007;81(1):1–5. 10.1189/jlb.0306164
89. Huang J, Xie Y, Sun X, et al. : DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev.2015;24(Pt A):3–16. 10.1016/j.arr.2014.10.004
90. Wagner KH, Cameron-Smith D, Wessner B, et al. : Biomarkers of Aging: From Function to Molecular Biology. Nutrients. 2016;8(6): pii: E338. 10.3390/nu8060338
91. Belsky DW, Moffitt TE, Cohen AA, et al. : Telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? bioRxiv. 2016. 10.1101/071373
92. Chen W, Qian W, Wu G, et al. : Three-dimensional human facial morphologies as robust aging markers. Cell Res. 2015;25(5):574–87. 10.1038/cr.2015.36
93. Chen W, Xia X, Huang Y, et al. : Bioimaging for quantitative phenotype analysis. Methods.2016;102:20–5. 10.1016/j.ymeth.2016.01.017
94. Horvath S: DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. 10.1186/gb-2013-14-10-r115
95. Cohen AA, Milot E, Yong J, et al. : A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev. 2013;134(3–4):110–7. 10.1016/j.mad.2013.01.004
96. Cohen AA, Li Q, Milot E, et al. : Statistical distance as a measure of physiological dysregulation is largely robust to variation in its biomarker composition. PLoS One. 2015;10(4):e0122541. 10.1371/journal.pone.0122541
97. De Maesschalck R, Jouan-Rimbaud D, Massart DL: The Mahalanobis distance. Chemometr Intell Lab Syst. 2000;50(1):1–18. 10.1016/S0169-7439(99)00047-7
98. Putin E, Mamoshina P, Aliper A, et al. : Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY). 2016;8(5):1021–33. 10.18632/aging.100968
99. Bürkle A, Moreno-Villanueva M, Bernhard J, et al. : MARK-AGE biomarkers of ageing. Mech Ageing Dev. 2015;151:2–12. 10.1016/j.mad.2015.03.006