Сайт использует файлы cookie. Продолжая пользоваться нашим сайтом, вы соглашаетесь на использование нами ваших данных.
Узнать больше
Принять и продолжить
Теория
Околокритичность, универсальность, скейлинг
Околокритическое поведение
Критические явления – это явления, связанные с фазовым переходом системы из одного состояния в другое. Например, переходы вода-пар, не магнетик-магнетик.

Эти переходы обуславливаются либо воздействием внешних сил (к примеру, внешнее магнитное поле), либо взаимодействием степеней свободы внутри системы. Чаще всего, такие переходы связаны с некоторым параметром системы, который заметно отличается в разных фазах (к примеру, параметр равен нулю в одной фазе и параметр больше нуля в другой фазе). Значение параметра, при котором такой переход начинается, называется критической точкой.

Поведение системы вблизи критической точки называют околокритическим поведением. Такое поведение может быть описано небольшим набором параметров (которые называются критическими индексами). Данный факт гарантируются такими концепциями современной физики, как скейлинг и универсальность.
Универсальность и скейлинг
Скейлинг – это свойство инвариантности системы, функционирующей вблизи критической точки, относительно масштабирования.

Универсальность в статистической физике означает, что вблизи точки фазового перехода, или критической точки, все термодинамические величины ведут себя универсальным образом, а именно, степенным. Показатель степени у каждой термодинамической величины свой. Эти коэффициенты называются критическими индексами. Набор критических индексов для системы полностью описывают ее поведение вблизи критической точки.

Все модели и сложные теории разбиваются на классы универсальности. Принадлежность к классу универсальности зависит от таких свойств, как, например, количество пространственных измерений, в которых находится система, симметрии. Множества критических индексов для систем внутри одного класса универсальности равны.

Допустим, для исследуемой модели удалось посчитать все критические индексы. Тогда, все остальные задачи, лежащие в классе универсальности с этой моделью, тоже автоматически будут решены.

Классов универсальности много, но намного меньше, чем всех возможных систем, где есть фазовые переходы.

Из-за скейлинга и универсальности, оказывается что совершенно разные на микроскопическом уровне системы (жидкость и немагнитное вещество радикально отличаются на микроскопическом уровне) могут вести себя одинаково вблизи критической точки, и это означает, что показатели степеней у характеристик этих двух систем из будут одинаковыми.
Для генно-регуляторной сети и некоторых других систем организма с внутренним взаимодействием (к примеру, параметров крови, нейронной сети) в ряде публикаций показано около-критическое поведение.

Под фазовым переходом в сетях имеют в виду переход «порядок-беспорядок» (когда сеть утрачивает свою структуру и становится случайной, хаотичной). На примере генно-регуляторной сети это означает, что система достаточно «гибка» к внешним флуктуациям, но в тоже время сохраняет свою структуру.
Пример перехода сети из регулярной в хаотическую для модели Watts-Strogatz. В данной системе параметр, который определяет меру порядка – это p, вероятность создания ребра.
Пользуясь наблюдениями об универсальном поведении и около-критичности, можно рассуждать о том, каким должен быть биомаркер старения и как его найти.

Свойства универсальности и около-критичности говорят о том, что существует группа из нескольких величин, которая определяет эволюцию сети во времени, и, значит, может быть биомаркерами старения. Анализ структуры сети позволит понять, как должны выглядеть упомянутые величины и идентифицировать их критические индексы. Это даст представление о биомаркерах старения и ответит на вопрос о их количестве. Возможно, степень старения организма человека не может определяться одним параметром, и независимых параметров несколько.

С другой стороны, сами критические индексы генно-регуляторной сети могут быть связаны с биомаркерами старения. В процессе старения критические индексы могут также эволюционировать во времени. Более того, скейлинг связывает критические индексы между собой и демонстрирует, что эти параметры не независимы. Это означает, что вычислив и глубоко проанализировав эволюцию хотя бы нескольких (строго говоря достаточно минимум трёх) критических индексов, мы можем найти и проанализировать остальные.

Все рассуждения схематично выглядят следующим образом:
Кроме около-критического поведения, в ряде исследований обнаружено, что микроскопически разные системы определенного организма – сети взаимодействующих сайтов метилирования, параметров крови, транскриптомов – в демонстрируют общие свойства, и их динамика вблизи критической точки одинакова. Это серьезный аргумент в пользу принадлежности микроскопически разных регуляторных сетей организма к одному классу универсальности.
Ренормализационная группа
Одним из наиболее развитых методов, позволяющим описывать критическое поведение и исследовать критические точки систем из разных областей физики является ренормализационная группа (ренормгруппа).
Ренормгрупповой подход отлично зарекомендовал себя для анализа по-настоящему сложных систем – с нелинейностями и огромным числом степеней свободы.

Этот подход очень развит, хорошо подкреплен математически и может быть адаптирован для применения к конкретной системе.

Среди успешных примеров применения ренормгруппы можно упомянуть описание сверхпроводимости, топологические фазовые переходы, а также фазовые переходы различных полимерах.

Метод ренормгруппы полезен, когда некоторая базовая информация про систему уже получена (к примеру, известны симметрии системы, хорошо понятно как устроено взаимодействие в системе, есть строгое определение меры упорядоченности в системе).

Для получения базовой информации необходимо сначала обратиться к классическим методам исследования сетей.
Современные методы исследования сетей
Большая часть информации про свойства сети может быть получена из анализа её топологии (структуры). Топология сети определяется матрицей смежности и её свойствами.
Спектральные свойства
Анализ спектра (собственных значений и векторов) матрицы смежности (и связанных с ней матриц, таких как лапласиан сети) – это отправная точка любого исследования.
Также, используя данные об ответе генно-регуляторной сети на лекарства (внешние возмущения) и на генную терапию (внутренние возмущения), можно исследовать, как меняется спектр в ответ на наиболее эффективные терапии или комбинации терапий. Таким образом, научиться теоретически предсказывать новые комбинации терапий, оказывающих синергентический эффект.
Спектральные свойства говорят о квазиустойчивых или метастабильных, и не устойчивых состояниях динамической системы. Амбициозной задачей является определение групп генов, влияющих на вид спектра генно-регуляторной сети и меняющих параметры квазиустойчивых состояний.
Ниже изображена сеть болезней человека (открытые данные) и собственные значения её матрицы смежности (вертикальная ось – само собственное значение, горизонтальная ось – номер собственного значения)
Опыт изучения спектров нейронных сетей мозга
Методы спектрального анализа были успешно использованы для исследования коннектомов мозга, что привело к ряду выдающихся открытий:
Сложная динамика коннектома может быть описана в рамках относительно простых моделей, полученные предсказания на основе которых проверяются экспериментально.
Сравнительный анализ, основанный на структурных коннектомах для нескольких организмов (C. elegans, макака и человек) - показал, что коннектом человека отличается от других коннектомов, и это различие может быть количественно описано с помощью графических спектров.
Было показано, что человеческий коннектом работает вблизи критичности, и свойства этой сети могут быть захвачены довольно простой математической моделью (модель Курамото).
Режим функционирования сети
Анализ топологии сети задействует различные методы. К параметрам, отвечающим на вопрос о режиме, в котором находится сеть (в упорядоченном или в хаотическом), относятся:
>>level spacing distribution
>>inverse participation ratio (IPR)
>>R-статистика.

Level spacing distribution – это распределение расстояний между собственными значениями матрицы смежности. Данная метрика очень чувствительна к симметриям системы и необходима предобработка сети, которая называется unfolding.

В отличие от level spacing distribution, IPR и R-статистика такой предобработки не требуют.

Также широко распространены методы анализа сетей, которые задействуют различные метрики кластеризации. Оценка кластеризации сети также помогает понять в каком режиме функционирует сеть.
На графике изображена зависимость GCC (global clustering coefficient - "интегральная" мера кластеризации сети.) от p (вероятность связи) для модели Watts-Strogatz.

Малые p — это почти регулярный граф, большие p — "хаотичный", случайный.
Пример изменения кластеризации в зависимости от вероятности связи для модели Watts-Strogatz.
Законы сохранения
Анализ топологии сетей и ее эволюции со временем может выявить законы сохранения. Такой подход был применен для анализа коннектома.

Под законами сохранения подразумевается наличие в сети таких паттернов (мотивов) как, например, клик.
Существует огромный разброс по продолжительности жизни среди различных видов организмов. Есть невероятные примеры, такие как Арктическая губка, организм царства животные, который способен жить 15 000 лет.

Поиск таких инвариантов позволит сделать важнейшие выводы о факторах, определяющих старение.
Клика – это участок сети, который представляет собой полный граф.

Эволюция сетей – это активно изучаемая область на сегодняшний день. Например в изменении сети со временем исследуется перколяция клик и предпочтительное присоединение.

Существует ряд моделей, которые описывают разную динамику топологии сети, как например Watts-Strogatz алгоритм и Barabasi-Albert.
Пример предпочтительного присоединения в эволюции сети в модели Барабаши-Альберта.

Связи с высокой вероятностью формируются между вершинами с большей валентностью.